ehs wire

 

 

blog horizontal banner

Environmental Health and Safety Blog | EHSWire

Indoor Air Quality in Healthcare Facilities During Construction and Renovation

Posted by Shivi Kakar

Sep 25, 2011 11:49:48 PM

Daniel Senatus

A construction and renovation project within any facility creates a range of situations which can release debris, pollutants and contaminants that can impact the indoor air quality. These contaminants may be transported to other areas via HVAC systems, personnel coming and going through encapsulation barriers, and other factors that can subsequently affect people beyond the project area. Consideration of the effect upon indoor air quality is particularly important in healthcare settings when performing construction or renovation projects. Under these conditions, patients and other people with existing health problems that are in the hospital for treatment are at increased risk of contracting nosocomial infections.

Planning and Administrative Controls


All hospital construction projects must go through an Infection Control Risk Assessment (ICRA) to determine the impact of the project on patient care. The ICRA process is usually lead by the Infection Control staff with additional input from the construction company, engineering, and safety managers. See ICRA Sample here.

Advance planning by all project managers, combined with proactive communication efforts, can successfully allay concerns during and after construction activities. Healthcare facilities must consider other factors that may be a potential hazard as a result of the project and then determine the controls that must be put in place to mitigate them. Other critical factors include knowing what areas will be unusable for the extent of the project, and the time of day that will minimize disruption of services (which is variable depending upon whether it is an ambulatory or inpatient facility). It makes sense that most construction in hospitals should be done in a part of the hospital that is not operational or is vacant.

Hazards to Consider


PM (Particulate Matter)

Construction and demolition activities may introduce particulate matter such as dusts and fibers into an environment. Most concerning is respirable dust; these are dust particles that are small enough to bypass the body’s natural defense and clearance systems (mucous, cilia) and not trigger the coughing reflex which is the body’s way of removing mucous and foreign material from the lungs and upper airway passages. Once these particles get deep in the lungs, they are more likely to be retained and can lead to a whole host of health issues including altered lung function, lung cancer, and even heart problems later on.
Biological Hazards

Construction and demolition of materials may contribute to the release of and exposure to a variety of microorganisms: fungi (Aspergillus, Candida, etc.), bacteria, and medical waste. There is also a good chance that animal droppings, insect parts and standing water may be encountered when breaking into areas not normally accessed. Building materials that are constantly damp or wet may serve as breeding grounds for microorganisms. Workers can come into contact with bodily fluids and bloodborne pathogens originating from leaking medical equipment (suction lines, etc).

According to OSHA “ bloodborne pathogens are infectious organisms present in blood that can cause diseases in humans. These pathogens include, but are not limited to Hepatitis B, Hepatitis C and HIV (Human Immunodeficiency Virus), the virus that causes AIDS.”  Hepatitis B and C are of the most concern in the healthcare construction and renovation setting because they can survive outside of the body for up to a week in the right conditions. Construction activities can make these microorganisms airborne, affecting the indoor air quality and posing a threat to workers and immunocompromised patients.

Engineering Controls


Typically these are implemented as part of the Infection Control Risk Assessment (ICRA).
Containment

Create a containment barrier with fire-rated 6 MIL polyethylene sheeting around the source and isolate it from other areas of the building so that there is no recirculation of air from the work area into other spaces. HVAC intakes within the containment should be sealed to isolate the containment from general ventilation. Create a second barrier directly outside of the containment barrier (this is considered the “dirty” area) with a sticky mat on the floor, this is where used PPE (personal protective equipment) can be discarded. Create a third barrier (clean area) where clean PPE can be stored; this will actually be the space between the dirty area and the occupied spaces. High traffic zippers should be used on all openings and sticky mats should extend six feet from the clean containment entrance to the occupied areas. These mats should be replaced daily or whenever they look dirty, whichever comes first.
Air Cleaning and Negative Pressure

Use NAM (Negative Air Machines) with HEPA (High Efficiency Particulate Air) filters inside the enclosure. Filters should be changed as needed. Create a negative pressure environment so that lower pressure inside the containment pulls outside air in and prevents the contaminated air from escaping. The NAM should be on prior to construction being started and stay on for the duration of the project whether construction is going on or not. A micro-manometer can be used to verify that negative pressure is established and maintained.
Dust Monitoring and Microbial Sampling

Continuous dust monitoring outside of the area can help determine the success of the control measures put in place. This can be accomplished using direct reading instrumentation that is equipped with alarms which notify personnel when dust is escaping from the enclosure so that corrective action can be implemented before patients and staff are impacted.

Collecting surface and air samples to evaluate microbiological impacts can also aid in establishing additional preventive measures to protect health and safety of patients and staff.

PPE (Personal Protective Equipment)


Prophylaxes and PPE

Construction in certain places in a hospital can increase a construction worker’s chance of being exposed to contaminated waste and bodily fluids. It is good practice to inoculate personnel with the Hepatitis B vaccine in addition to PPE if there is enough time before the project (4 to 5 months) or if the construction company does a lot of work in functioning hospitals. The vaccine is given in a three dose series to reach immunity:

  • Dose #1 – Initial dose

  • Dose #2 – 30 days after dose #1

  • Dose #3 – 4 months after dose #2


All PPE selected for construction use at any healthcare facility must be “appropriate” for the task at hand. OSHA 1910.1030(d)(3)(i) states that personal protective equipment will be considered "appropriate" only if it does not permit blood or other potentially infectious materials to pass through to or reach the employee's work clothes, street clothes, undergarments, skin, eyes, mouth, or other mucous membranes under normal conditions of use and for the duration of time which the protective equipment will be used.

In damp areas or places with medical waste or other contaminated fluids, liquid-resistant Tyvek suits, gloves, shoe covers, respirators/N95 masks, and goggles should be worn. All PPE must be discarded before exiting the containment area.

Housekeeping


Post-construction cleanup in healthcare facilities is the final stage but is just as important as any other phase. A combination of damp wiping and HEPA vacuums should be used to clean all dusty surfaces. After all trash, dirt, and debris have been removed, wet rags should be used to wipe down all areas within the containment and other areas immediately surrounding it.

Removal of trash may require that the trash be wiped down and clean and/or placed in a covered cart for transport away from the construction site to the waste dumpster so as not to spread contamination in sensitive areas. The renovated or constructed area should be in a sanitary condition before it is turned over to hospital staff. A careful inspection and testing program can aid in documenting the level of cleanliness.

Planning and Partnership


Construction in any healthcare facility is a necessity – whether it is a long-awaited and carefully planned renovation or a response to an urgent problem within the building envelope. In either case, protecting the health and safety of patients and caregivers in the facility and the construction workers can be achieved through planning, communication, and a thorough knowledge of indoor environmental quality (IEQ) and industrial hygiene (IH) procedures and best practices. The success of the project is also dependent upon the partnership of the medical staff, management personnel and all the outside resources that will address the problem and ensure that the construction is completed without creating any additional health issues.

If you have any questions about construction or renovation at a healthcare facility or clinic, please comment below or c ontact us and an Emilcott IEQ specialist will respond.

References and Further Reading


http://www.ehow.com/list_7716877_statistics-exposure-hospital-construction-activity.html

http://www.cdc.gov/ncidod/eid/vol4no3/weinstein.htm

http://www.mycology.adelaide.edu.au/downloads/Preventing-IFI-Buildings.pdf


Read More

Topics: indoor air quality, Personal Protective Equipment, Renovation, General Industry H&S, OSHA Compliance, General EHS, Construction H&S, Emergency Response, Air Monitoring, construction, respirable dust, remodel, ICRA, protect, biological hazards, health and safeety, containment, particulates, hospitals, sampling, demoliton, healthcare

Hurricane Irene Leaves a Legacy of Water Intrusion and the Promise of Mold

Posted by Shivi Kakar

Aug 31, 2011 5:15:00 AM

Dale Wilson, CIH, LEED AP

With the departure of Hurricane Irene, many buildings throughout NJ and NY have sustained a wide range of water damage and require action to remediate or otherwise mitigate the impacts of water intrusion:  mold, fungus and structural damage. 

Timing is a key element in this response; immediate action is necessary to minimize the potential for mold growth within the building envelope. As in medicine, early detection leads to an early (and usually less expensive) cure. Time and water combined can grow to be an expensive and time-consuming enemy.  Failure to respond promptly will very likely result in mold growth requiring significantly more demolition than if the condition is handled in a timely manner.  What is the definition of “timely”? As soon as mold is discovered!

Experts Can Determine Proper Mold Remediation


Along with timing, selection of the proper remediation technique for the building’s water intrusion and moisture problem (removal, drying in place using fans and/or dehumidification equipment, cleaning, treatment with biocide, etc.) is essential for maintaining a safe building. Improperly implemented remediation procedures can result in cross-contamination and hidden mold growth areas which could adversely impact occupants as time passes while increasing overall remediation time and costs .

Water and flood remediation procedures vary and are dependent upon the convoluted mix of building materials, building design, furnishings, extent of exposure, and the source of the water. Water intrusion investigations and cleanup can be especially challenging in buildings such as multi-unit residences, hospitals or rehab centers, schools and older buildings. There are a wide range of environmental, health and safety (EHS) issues associated with commercial, industrial and institutional facilities; it is important to manage the project as well as the complex interaction between employees, contractors, and the public within a facility; the buildings themselves; and the physical surroundings where they are located.

Mold Remediation Services


An EHS mold expert will identify and eliminate sources of mold and other Indoor Environmental Quality problems. They will also provide a detailed project roadmap for cleanup and removal as well as project oversight for safe and effective remediation. Emilcott’s mold remediation strategy for safe and effective mold removal (with minimal damage to the building and reduced impacts to building occupants) includes the following steps:

Step 1: Initial Assessment

Locate the source of the moisture without deconstruction or disruption to the building and occupants.  Determine the urgency of the mold problem and its impact upon workers or residents.

Read More

Topics: indoor air quality, General Industry H&S, General EHS, Construction H&S, Emergency Response, Air Monitoring, Mold, water, expert, irene, new york, hurricane, remediation, new jersey, flood, intrusion

343 + 2 = Changes in NYC Asbestos Regulations

Posted by Shivi Kakar

Aug 29, 2011 7:22:05 AM

Dale Wilson, CIH, LEED AP, Sr. Project Manager

"343" is a symbol of great sadness to members of the FDNY and their families as 343 is the number of FDNY firefighters who died on September 11, 2001. That staggering figure is remembered quite readily when recalling the events of that day and during the remembrances that have followed.  However, almost six years later, the lives of two additional NY firefighters were claimed during the demolition of the 9/11-damaged Deutsche Bank Building.

The 41-story Deutsche Bank Building stood adjacent to the World Trade Center and was severely damaged by falling debris and smoke when the Twin Towers collapsed. The damage to the skyscraper was so extensive that it had to be demolished. However, as the federal EPA requires, before it could be demolished, all asbestos-containing materials needed to be removed.

By August 18, 2007, demolition was well underway and the building now stood at only 26 stories tall.  Around 3:40 pm, a massive seven-alarm fire broke out as a result of a discarded cigarette in the asbestos decontamination unit on the 17 th floor.  The building had not been inspected by the Fire Department since March, when it should have been inspected every 15 days.  As a result, a crucial but inoperable fire standpipe forced firefighters to raise hoses up from the street to combat the flames.   Inside the building, three firefighters struggled to pull a hose through the deconstructed building. Only one of these men survived. The configuration of the asbestos abatement added to the difficulty of fighting a fire in an already structurally-compromised building.

The National Institute for Occupational Safety and Health (NIOSH), an institute within the Centers for Disease Control and Prevention (CDC), completed a description and evaluation of the incident as part of their fire fighter fatality investigation. Several items stand out from the asbestos abatement as contributors to the fire:

  • White plastic sheeting was used to partition the floor area into separate zones.  All these partitions created maze-like conditions for the firefighters.

  • Numerous zones were under negative pressure, as required for asbestos abatement, possibly drawing smoke and fire into localized areas.

  • Stairwell doors were blocked by wooded hatch covers as part of the construction of the asbestos containments.

  • Plastic sheeting, construction debris, and exposed lumber in partitions provided additional fuel.


These contributing conditions created by the asbestos abatement project have been recognized by several authorities, and in an effort to maximize safety, New York City enacted a number of new laws to ensure that asbestos abatement projects are conducted safely.  These laws impact the ways that asbestos projects are filed, approved and inspected, and involve new levels of cooperation among the agencies that oversee asbestos and construction safety:  the NYC Department of Environmental Protection (NYC DEP), the Department of Buildings (DOB) and the Fire Department (FDNY).  Most notably, the NYC DEP created the Asbestos -Technical Review Unit (A-TRU) to ensure that asbestos abatement is conducted safely and a new process for filing for asbestos permits called Asbestos Reporting and Tracking System (ARTS).

ARTS enables applicants to submit applications and/or receive approvals (or objections) electronically.  During the application process, applicants are asked questions to identify if

  • the building’s fire protection systems (e.g., fire alarm or sprinkler system) will be turned off as a result of the abatement work,

  • abatement work will result in blocked or compromised egress or whether any components of the fire protection system are going to be removed as part of the abatement

  • abatement work entails removal of passive fire protection (e.g., fire resistance rated walls, sprayed on fireproofing, or smoke dampers)


If there is an impact to any of these fire protection items then a comprehensive Work Place Safety Plan must be developed for the project indicating abatement containment areas and systems, obstructed and temporary exits, tenant protection and a description of any measures that will be taken to mitigate compromised fire protection systems or means of egress. As a final item intended to promote life safety during abatement projects, the asbestos supervisor must inspect exits daily to ensure that there are no exterior blockages or impediments to exiting. If any blockages or impediments are identified, work must stop until the blockage has been removed.  Essentially, deconstruction and asbestos-abatement work cannot compromise the safety of workers and firefighters.

As Carrie Bettinger noted in a past EHSWire blog, “ In our society and legal system it seems that, yes, someone (or many) has to tragically die before change and regulation are considered.” In this case, the tragedy was 343+2. Hopefully the A-TRU process and increased oversight from NYC DEP, DOB, and FDNY will prevent another similar tragedy from occurring.

Postscript:  The last of the Deutsche Bank tower criminal trials were completed in July, 2011. More information can be found at http://www.nytimes.com/2011/07/07/nyregion/final-defendant-is-acquitted-in-deutsche-bank-fire-trial.html.
Read More

Topics: indoor air quality, health and safety, Construction H&S, EPA, Emergency Response, Homeland Security, H&S Training, worker safety, regulation, construction, emergency response training, demolition, 9/11, Work Place Safety Plan, asbestos, September 11, Deutsche Bank NYC, A-TRU, 9-11, Fire Safety

What Has Changed in Environmental Monitoring Since Sept 11, 2001?

Posted by Shivi Kakar

Aug 15, 2011 11:00:53 PM

Dave Tomsey

On the second day of 2011, the James Zadroga Act was authorized to broaden and renew funding and extend benefits to Ground Zero workers whose death was a result of exposure.  These exposures were directly and indirectly caused by toxins present in the billowing clouds of dusts and smoke following the worst tragedy to happen on American soil in my lifetime.  The tragic sickness of countless rescue workers continues to add heartbreak where there is little room for more.

What Do We Know?


In the 9/11 crisis, workers were really battling two threats:   terrorism and vaporized building materials. The high levels of toxins at the World Trade Center site were identified and measured.  This process was carried out using sampling pumps, associated media and lab results in order to classify possible carcinogens and determine their percentage in a given volume of air.  The process is the same today. Although concentrations may differ from one area to another, the goal is to establish the worst-possible contaminant scenario to protect site workers and the public.  Once the type and levels of hazards are known, engineering controls, PPE and other methods of worker health protection are put in place.

Protecting Emergency Response Workers: What Has Changed?


In the time that has passed since the WTC tragedy, technology has progressed to offer improved worker protection. Just as smart phones have become prevalent in our lives, the same technology has been integrated into measurement devices producing smaller instrumentation with better, faster communication capabilities.  Put together, these smart systems, unthinkable ten years ago, enable real time environmental hazard monitoring.  In a nutshell, as hazards are detected at the site, real time systems send up an immediate flare.  What used to take a day (at best) to reveal is now known instantly at your fingertips.

How Would Real-time Monitoring be Used for Emergency Response Today?


As lab samples are being collected and rescue workers or cleanup crews are in service with respirators, monitoring field stations can be set up and started.  Once samples identify the risk, , the field stations can continuously measure dust and volatile organic compounds (VOCs) in real time as a surrogate for contaminants found in laboratory samples.  Field stations located around and within the work area form multiple monitoring zones to (1) protect workers in close proximity to contaminants, (2) determine an exclusion zone for support personnel, and (3) protect residents and other businesses at an even greater distance from the site. End result? The constant stream of field data, with corresponding weather information such as wind, precipitation and temperature, would either confirm or indicate modified worker protection needs as the project continues.

How Do You Know When Workers Need Some Type of Additional Safety Precautions Beyond Respirators?


A real time environmental monitoring system is designed for continuous monitoring of all aspects of emergency response recovery and cleanup efforts so that risk can be evaluated as the scenarios change. Today’s technology has impacted and improved virtually every aspect of environmental monitoring:

  • Authorized personnel can receive constant updates and alarms via multiple means:  text, email or 2-way radios.

  • Incoming and historical data can be viewed by multiple stakeholders at varying locations and allow managers in the field to instantly assess trends with laptops, tablets and smart phones.

  • Measurements collected in real time are averaged and processed to show trends in and around the work zone.  These trends are displayed as either a table, graphic plots or shown with contours to establish if a work practice or area is safe for personnel

  • Plotting data points with corresponding wind speed and direction allows for managers to determine if offsite sources are impacting the job site or if the vapors and dusts shown on-screen are generated onsite.  Meteorological data showing site conditions (such as high winds) indicates when additional safety precautions should be considered.

  • New monitoring equipment now measures multiple levels of dust and vapors into the parts per billion range.  Vapors measured in the parts per billion ranges allow for managers to see if potential toxic vapors are steadily climbing from the lowest detectable levels.  Multiple particle sizing differentiates inhalable dusts from heavier ones that can contain heavy metals.  This allows managers to classify dust readings, watching diesel emissions across site for workers and heavier particulates for neighboring residents and the public.


With such new and remarkable technologies there is no reason to not employ them.

The connected lifestyle and technology of today’s standards help us accomplish many tasks and stay informed.  We are all used to checking our phone or bringing up a website to learn more.  This same connection through real time monitoring to hazardous work sites would be second nature to most and allow for the protection of many.  My hope is that there will never be a need for real time monitoring in response to an incident like 9/11 but, as an American and a CIH working at hazardous sites; it is reassuring to know that there are developed technologies in place to better protect workers if the worst does indeed occur.
Read More

Topics: indoor air quality, Construction H&S, Emergency Response, Air Monitoring, 9/11, September 11, 9-11, Exposure, WTC, volatile organic compound, technology, VOC, environmental monitoring, real time monitoring, contaminants

Occupational Heat-related Illness

Posted by Shivi Kakar

Jul 30, 2011 10:33:44 PM

Dian Cucchisi, PhD, CHMM

“Man is it hot out here.” As the site HSO (Health and Safety Officer), we hear and utter those words quite frequently during the summer. Working outside in 90 degree temperatures with high humidity levels is anything but comfortable. Who doesn’t look forward to the end of the work day when you can escape to an air conditioned environment with a cold drink or jump into the pool?

It’s not just unpleasant -- working in hot, humid temperatures can be very dangerous.  If you don’t take extra care to rest and hydrate you can subject yourself to heat cramps, heat exhaustion, and the deadly heat stroke. So what can you do to protect yourself in hot, outdoor conditions while continuing to work. 

As an experienced Health and Safety professional and working on construction and hazardous waste sites, I make an extra effort to see to it that there is plenty of water and electrolyte drink on hand before the work day begins. Throughout the day, I check on workers to see if any are exhibiting heat-related symptoms. Frequent breaks in a cool, shaded location and hydration (whether you feel thirsty or not) with water and electrolyte drinks are your first and best defenses against heat-related illnesses.

It’s not just construction workers that need to aware of the affect of heat as they work – anyone subjected to a continuous, hot working environment should keep heat-related illness prevention in mind. One of my most memorable projects was a cleanup of an abandoned chicken processing plant in the height of summer heat. The owner had walked away from the plant after the power had been cut off due to non-payment of the bills and there were several tons of chicken in various stages of processing in the freezers. Of course when the power gets cut, the freezers do not remain cold for very long. The odor caused by the decomposing chickens created quite a challenge for determining the proper personal protective equipment. Ultimately, the work on this project was performed in Level B (supplied air respiratory protection) with PVC suits as our protective clothing to block permeation of the odor. 

Prevention of heat-related illnesses for the cleanup workers was a one of the focuses in our pre-project planning as the project began in July and continued through summer into the early fall.  Because of the hot, humid temperatures and the heat-retaining PPE, we set a limit of 45 minutes for a group of workers who were then relieved after that time period by another group of workers. The first group would go through the decontamination process followed by a shower and rest in an area where we had assembled a tent to provide shade.  Despite the challenges, we made it through this hot and truly disgusting project without any workers suffering from heat-related illness. In fact, this long-term and highly publicized remediation project was inspected by OSHA where portions of the project layout and performance were videotaped for use in OSHA training “How-To’s!”

Symptoms of Heat-related Illness


These indicators can, but do not have to, begin in progression starting with heat rash, heat cramps, heat syncope, heat exhaustion, and heat stroke.

Heat rash is a skin irritation caused by excessive sweating during hot, humid weather.  In high humidity, the sweat does not evaporate quickly from your skin’s surface, and as clothing rubs against the wet skin, irritation can develop resulting in a rash.

Heat cramps are involuntary muscle spasms within the large muscles of your body.  Heat cramps typically occur in the thigh, core, and arm muscles.

Heat syncope is a fainting or dizziness episode that can occur as a result of dehydration or lack of acclimation.

Heat exhaustion is the body’s response to loss of water and salt usually as a result of excessive sweating.  Symptoms include heavy sweating, extreme weakness or fatigue, dizziness, clammy moist skin, muscle cramps, elevated temperature, and fast, shallow breathing.

Heat stroke is a medical emergency.  As the body temperature rises, the sweating mechanism fails and the body is not able to cool down and control its temperature And, beware, this severe reaction can happy quickly:  the body temperature can rise to 106 degrees within 10 to 15 minutes!  Without emergency treatment, heat stroke can cause death or permanent disability.  Symptoms of heat stroke include hot, dry skin or profuse sweating, hallucinations, throbbing headache, high body temperature, confusion/dizziness, and slurred speech.

What should you do if you start to experience any of these symptoms?


First of all, take a break. Move to a cool, shaded area and drink plenty of non-alcoholic, caffeine-free liquids.  If possible take a cool shower or dip an article of clothing in cool water and place on your body.  If you are suffering from heat rash do not apply wet clothing – instead dry off and remain in a cool area until the sweating ceases.  Resume work only after your body has cooled to normal temperature.

It is very important for Supervisors and Health and Safety Officers to keep a close watch on workers especially on hot, humid days and to allow them (as well as require them) to take frequent breaks.  Workers exhibiting any of the symptoms listed above should be removed from the work area and instructed to take a break in a cool, shaded area and to drink water or an electrolyte drink.

How do you “keep your cool” on hot, humid days?
Read More

Topics: General Industry H&S, OSHA Compliance, General EHS, Construction H&S, Emergency Response, H&S Training, health and safety officer, occupational, heat exhaustion, heat stroke, humid, heat rash, heat, HSO, heat syncope, heat-related illness, hot, heat cramps

Fall Protection for Residential Workers – New Standards and New Tools to Help with Understanding Compliance Requirements

Posted by Shivi Kakar

Jul 23, 2011 11:51:15 PM

Lee Scott Bishop, CIH, MPH

Have you ever driven by a crew constructing a new house or installing a new roof?  Have you noticed a guardrail system in place to keep workers from falling when working on the upper levels?  Or have you seen a personal fall arrest systemsthat will lock and hold a falling worker like a seatbelt in your car?  Most likely you have not seen either of these fall protection systems in place for residential projects!

Nearly one residential construction worker dies each workday as a result of falls.  OSHA believes that no job is worth a life.  Dr. David Michaels, Assistant Secretary of Labor for OSHA has said “ Fatalities from falls are the number one cause of workplace deaths in construction.”  “ We cannot tolerate workers getting killed in residential construction when effective means are readily available to prevent those deaths

For workers employed by a mid-sized contracting group or a small crew engaged in house painting or outside repairs, OSHA has published a new directive which mandates the use of fall protection for all residential construction workers at heights of 6 feet off of the ground. The Occupational Safety and Health Administration’s (OSHA) Fall Protection Policy for Residential Construction went into effect on June 16, 2011. Employers engaged in residential construction are required to follow the provisions of 29CFR1926.501(b)(13) which states:
"Residential construction." Each employee engaged in residential construction activities 6 feet (1.8 m) or more above lower levels shall be protected by guardrail systems, safety net system, or personal fall arrest system unless another provision in paragraph (b) of this section provides for an alternative fall protection measure. Exception: When the employer can demonstrate that it is infeasible or creates a greater hazard to use these systems, the employer shall develop and implement a fall protection plan which meets the requirements of paragraph (k) of 1926.502.

Note: There is a presumption that it is feasible and will not create a greater hazard to implement at least one of the above-listed fall protection systems. Accordingly, the employer has the burden of establishing that it is appropriate to implement a fall protection plan which complies with 1926.502(k) for a particular workplace situation, in lieu of implementing any of those systems.

This is not a new Standard.  Previous to 6/16/11, the existing policy directive (which was never intended to be a permanent solution) allowed residential construction employers to follow alternative fall protection methods instead of using conventional fall protection, like safety nets, personal fall arrest or guardrail systems.  OSHA INSTRUCTION DIRECTIVE NUMBER STD 03-11-002, Compliance Guidance for Residential Construction has replaced that policy.  The Agency is also reviewing all letters of interpretation that referenced the cancelled directive.  This new directive neither creates new legal obligations nor alters existing obligations created by OSHA standards or the Occupational Safety and Health Act.  The new policy directive merely implements the Standard as originally intended.

While sharing the procedures and equipment available to employers and in use in the industry, OSHA itemizes other forms of protection against falls such as

  • 1926.501(b)(2)(ii) - Controlled access zones and control lines - leading edge applications.

  • 1926.501(b)(4)(i) and (ii) - Covers - falling through holes.

  • 1926.501(b)(5) - Positioning devices - face of formwork or reinforcing steel.

  • 1926.501(b)(7)(i) and (ii) - Barricades, fences and covers - falling into excavations.

  • 1926.501(b)(8)(i) - Equipment guards - falling into dangerous equipment.

  • 1926.501(b)(10) - Warning line system and safety monitoring system - roofing work on low-slope (4:12 or less) roofs.  Or, on roofs 50-feet (15.25 m) or less in width, the use of a safety monitoring system without a warning line system is permitted.


The Directive/Standard requires training of workers, by the employer, so they can recognize potential hazard areas and are familiar to the resources they can implement to protect themselves from those hazards.  Trained workers receive certification which must be updated when the tools used change.  There is an option for the employer to find this Standard “not feasible”.  However, this avenue requires a written Fall Prevention Plan which is site specific, approved by a “qualified person”, kept up-to-date, and kept on the premises where the work is being conducted, and addresses all of the requirements found in section K of the standard.

OSHA further allows fall protection elements not covered in the “501” Standard such as Scaffolds, Ladders, and Aerial lifts which can be found covered in 29 CFR 1926.453.

Information for this blog was obtained from http://www.osha.gov/doc/residential_fall_prevention.ppt.  This presentation is an excellent resource for identifying acceptable fall protection options.  Pictures portray each type of protection as well as Bakers and Perry scaffolds; wall bracket, or top plate, scaffold system; Pump-jack Scaffold; and other options such as Extensible Boom Aerial Lifts.

So, if you are a residential contractor who needs fall protection, what’s the next step for you?  First, be aware that if you ignore the OSHA compliance laws, you are still accountable (ignorance is no excuse!).    OSHA has developed a dedicated and easy-to-understandOSHA Construction webpage with  a variety of comprehensive residential fall protection compliance assistance and guidance materials at www.osha.gov/doc/residential_fall_protection.html.  For more information and research

U.S. Department of Labor
Occupational Safety & Health Administration
Directorate of Construction – Room N-3468
200 Constitution Avenue
Washington, D.C. 20210

Read More

Topics: OSHA, OSHA Compliance, General EHS, Construction H&S, H&S Training, Compliance, construction, safety, residential, fall, fall protection, workers

Occupational Exposure to Natural UV Radiation

Posted by Shivi Kakar

Jul 18, 2011 2:09:15 AM

Laurie deLaski, CIH

It’s summertime again... time for barbeques, bathing suits, and sunscreen.  We all know we should protect ourselves from the sun damage to skin, eyes, and possible skin cancer.  I remember as a child the only available sun lotion was 2, 4, and 8, and it was considered healthy to get a little red.  A result of that latent exposure to the sun was Melanoma that killed my sister at age 47.

When asked about potential occupational “overexposure” to sunshine, I had to ask:

  • Is there more to know about protecting workers from sun exposure?

  • What are the regulations and occupational exposure recommendations for exposure to ultraviolet (UV) radiation?


Here are some answers ….

It is well established that UV light is the part of sunlight that causes “sunburn”.  UV light is a type of non-ionizing radiation with very high energy, which is why it can cause tissue damage.  So, it follows that one should protect themselves from overexposure to this commonplace yet risky energy source.

What do the government regulators and research institutions recommend?




The only reference in the Occupational Safety and Health Administration (OSHA) standards to UV radiation regards eye protection from UV radiation generated by welding arcs.  OSHA does have an informational webpage titled “ Protecting Yourself in the Sun”.

The American Conference of Governmental Industrial Hygienists (ACGIH) has a recommended standard for employee exposure to UV radiation; however, this standard relies on measurement of the UV exposure and is intended for indoor/manmade sources of UV radiation.

The National Institute of Occupational Safety and Health (NIOSH) Workplace Safety and Health Topics  webpage, UV Radiation, is devoted to providing information to workers and employers regarding the risks, health hazards, and recommended control methods for reducing the risks of sunburn and skin cancer from sun exposure.  NIOSH recommends the following for protection from occupational exposure to UV radiation:

  • Wear sunscreen with a minimum of SPF 15.

    • SPF refers to the amount of time that persons will be protected from a burn. An SPF of 15 will allow a person to stay out in the sun 15 times longer than they normally would be able to stay without burning. The SPF rating applies to skin reddening and protection against UVB exposure.

    • SPF does not refer to protection against UVA. Products containing Mexoryl, Parsol 1789, titanium dioxide, zinc oxide, or avobenzone block UVA rays.

    • Sunscreen performance is affected by wind, humidity, perspiration, and proper application.



  • Old sunscreens should be thrown away because they lose their potency after 1-2 years.

  • Sunscreens should be liberally applied (a minimum of 1 ounce) at least 20 minutes before sun exposure.

    • Special attention should be given to covering the ears, scalp, lips, neck, tops of feet, and backs of hands.



  • Sunscreens should be reapplied at least every 2 hours and each time a person gets out of the water or perspires heavily.

    • Some sunscreens may also lose efficacy when applied with insect repellents, necessitating more frequent application when the two products are used together.



  • Follow the application directions on the sunscreen bottle.

  • Another effective way to prevent sunburn is by wearing appropriate clothing.

    • Dark clothing with a tight weave is more protective than light-colored, loosely woven clothing.

    • High-SPF clothing has been developed to provide more protection for those with photosensitive skin or a history of skin cancer.



  • Workers should also wear wide-brimmed hats and sunglasses with almost 100% UV protection and with side panels to prevent excessive sun exposure to the eyes.


The International Commission on Non-Ionizing Radiation Protection (ICNIRP) and World Health Organization (WHO) published a recommendation paper “ Protecting Workers from Ultraviolet Radiation, 14/2007”.  This document addresses both natural and manmade UV sources.  It provides an interesting risk matrix based on latitude, work conditions, work environment and clothing and makes recommendations for additional protection based on the combination of these factors. The book is comprehensive and full of interesting facts for anyone interested in diving in.  For example, dark sunglasses without the dark side shields (or wrap-around design) will allow a substantial amount of UV exposure to the eyes.  This is because when wearing sunglasses the pupil and eyelids open proportionally to the darkness of the sunglass then the light exposure comes in from the sides!

Occupational health programs for outdoor workers at risk from UV exposure include the classic industrial hygiene elements:

Engineering Controls

Read More

Topics: health and safety, General Industry H&S, General EHS, Construction H&S, Exposure, occupational, UV radiation, worker, sun exposure, ultraviolet, UV exposure, UV

For Schools, Summer Time is Asbestos Time!

Posted by Shivi Kakar

Jun 26, 2011 11:33:00 PM

Dale Wilson, CIH, LEED AP, Sr. Project Manager

Summer vacation is what every student dreams of...no school!  While this may be true for the educational calendar, summer is the time of year when schools generally address their big asbestos issues.  So instead of students and teachers filling the classrooms, they are replaced by a range of very specific professionals that are required to get the job done:  the Local Education Agency (LEA), Designated Person, Inspectors, Management Planners, Remediation Contractors, and Asbestos Safety Technicians/Project Monitors.

Regulations for Asbestos in Schools


Asbestos in schools is regulated by the Asbestos Hazard Emergency Response Act (AHERA), promulgated by the US Environmental Protection Agency (EPA) in 1986. AHERA applies to all public and private elementary and secondary schools in the United States and requires LEA’s to identify, evaluate and control Asbestos Containing Building Materials (ACBM).  At each school a “Designated Person” is given the responsibility to be in charge of the school's asbestos control program.  The regulation is meant to protect children, as health issues from asbestos are not immediate, but can take decades to appear. The EPA explains on their website:
Although asbestos is hazardous when inhaled, the risk of exposure to airborne fibers is very low. Therefore, removal of asbestos from schools is often not the best course of action. It may even create a dangerous situation when none previously existed. The Environmental Protection Agency (EPA) only requires removal of asbestos to prevent significant public exposure during demolition or renovation. EPA does, however, require an in-place, pro-active asbestos management program for all LEAs in order to ensure ACBM remains in good condition and is undisturbed by students, faculty, and staff.”

Identifying the Problem


The first task of managing asbestos correctly is identifying the location, quantity, and condition of ACBM.  This responsibility is assigned to an AHERA-accredited Building Inspector.  In addition to conducting the initial inspection, Building Inspectors must also re-inspect ACBM every three years. Six- month periodic surveillances are also conducted by a Building Inspector or other individual familiar with the inspection results, such as a member of the custodial staff.  Collectively, the inspections and surveillances help maintain the accuracy of the inventory and identify any damage that requires a response action.

Developing a Plan


The inspection and surveillance results are used by AHERA-accredited Management Planners to develop an Asbestos Management Plan specific to each school.  The Asbestos Management Plan uses the inventory to assess the likelihood of disturbance and recommend appropriate response actions. 

Plan Implementation


Because children are not occupying the school in summer, it is the perfect time to implement response actions that would otherwise disrupt the educational process and present risk. Response Actions include the following activities:

    • Removal

    • Repair

    • Encapsulation

    • Enclosure

    • Operations & Maintenance (O&M)


Response actions are undertaken by licensed firms who employ AHERA-accredited supervisors and abatement workers.  Many states also require the companies to have a state-issued license for asbestos abatement work and supervisors and workers must carry performance identification permits. In many states, oversight of the work is done by a trained professional such as NJ’s Asbestos Safety Technician (AST)/Project Monitor who works for an independent firm (not the abatement company) to ensure that proper procedures are followed, and performs on-going air sampling and final clearance sampling to document that the response action does not release asbestos particles into the school.  After all, the goal of the response action is to make conditions inside of the school safe!

The AHERA Regulations turned 25 this year. I f you want to find out more about asbestos and the regulations that control its presence in your local schools, visit the EPA website or review this list of FAQ.  Asbestos Management Plans are required to be available to the public, and you can receive a copy from your school district just by asking.

Parents, have you heard about an asbestos removal or management plan in your school district?  To learn more about Asbestos management in schools, the EPA publishes an informative “The ABCs about Asbestos in Schools” If you are part of an asbestos management team, do you have some reassuring information to share with concerned parents?
Read More

Topics: indoor air quality, Construction H&S, EPA, Air Monitoring, remediation, asbestos, schools, AHERA, ACBM

TMI: Is there such a thing as Too Much Information for environmental monitoring?

Posted by Shivi Kakar

Jun 20, 2011 7:25:00 AM

by Barbara Alves

It’s funny, let’s face it. Someone shares some tawdry detail about their personal life and we wince. TMI…please just keep it to yourself! We chuckle or shake our heads. In reality, information equals power. The more we know, the better decisions we can make. If we have only half the important details, we will make weak decisions.

Let’s use some history to drive this home. Although the Allied Forces ultimately won WWII, overconfidence from the D-Day invasion and the quickness with which the Allies pushed the Germans eastward across France, caused Eisenhower to underestimate the tactical abilities and determination of Hitler’s army. This resulted in the disastrous Operation Market-Garden in the Netherlands and the Battle of the Bulge in the Ardennes. Because of lack of current data in the Market-Garden strategy, the Allies were not in Berlin by the end of 1944 as they expected. Instead, by December of 1944 the Germans had broken through into the Allies' line of advance in the Ardennes and caught us ill-prepared. Poor intelligence cost tens of thousands of lives.

This is perhaps one of the most dramatic examples of “not enough information”, but it makes the point. Amazingly, with the communication capabilities of today’s wireless, cellular, Internet and other “instantaneous” technologies, many choose NOT to use this power to gather all the project information that they can get. Like an ostrich with it head in the sand, if they don’t know something, they feel that they don’t have to react or worse, be held accountable. This “ignorance is bliss” type of decision-making is often the primary reason people make the choice to NOT implement real-time environmental monitoring on construction and remediation sites. “If we don’t know that it’s dangerous, than it must be ok, right?” Sounds crazy, but it’s true!

Using a modern and proactive approach, technology is available (right now) to continuously retrieve important and fluctuating intelligence about environmental field conditions. The information is gathered and immediately transmitted wirelessly to smart phones, PDAs, PC and laptops – all accessible by the Internet for all authorized viewers. And the data keeps rolling in throughout the project’s life cycle. What power!  To be able to make an immediate decision (or better yet, a correction) from a remote location and save time, expense, and ultimately, human health.

And what about the ability to review, store and retrieve project environmental data, which was collected over a period of time, for comparison or trending?  Super powerful! This can only result in better planning. Adding better decision-making abilities to better planning capabilities should ultimately result in doing a better job, a cleaner site and healthier workers. Who wouldn’t want that?  So the real question is, if an environmental monitoring system is NOT collecting reliable, real-time data, aren’t you really just making anecdotal decisions based on guesstimates instead of a foundation of actual data?

Many historians feel that Eisenhower’s planning of Operation Market-Garden was anecdotal because it was based on what the Allied Forces experienced coming out of Normandy. It was certainly wrong. Historians also believe that what turned the war around was the unbelievable ability our forces had to assess the real-time intelligence they gathered as they were “living in the field of battle” to make tactical decisions and outsmart the enemy.

If real-time, reliable data is available to help you make good, solid decisions, get it and use it. You will do a better job and make fewer mistakes. Information is power and you can NEVER have too much of it.  How have you used TMI to develop a better project or framework?
Read More

Topics: indoor air quality, General Industry H&S, General EHS, Construction H&S, Emergency Response, Air Monitoring, Hazardous Waste Management, Air Sampling, construction, remediation, technology, environmental monitoring, environmental air monitoring, Respiratory, perimeter monitoring, air montoring

Expensive, damaging and possibly fatal…the truth about occupational slips, trips and falls!

Posted by Shivi Kakar

Jun 13, 2011 3:00:40 AM

By Eileen Lucier

Slips, trips, and falls aren’t at the top of anyone’s “most glamorous” EHS topics list.  Many people perceive slips, trips, and falls as minor incidents resulting solely from either carelessness or clumsiness. In fact, losing your footing is the basis for basic comedic art (ever watch “The Three Stooges” or “America’s Funniest Home Videos”?)  

Quite the opposite -- slips, trips, and falls are a very costly and serious worker safety issue. In 2008, these incidents cost American businesses a staggering $13.67 billion in direct workers compensation costs. That’s more than any other cause and more than the combined cost of the third through sixth ranked causes. 

Injury, Illness and Death Facts You Should Know


Slips, Trips, and Falls….

How can slips, trips, and falls be prevented?


As with most safety hazards, slip, trip, and fall hazards can be minimized with a combination of good work practices, proper use of appropriate equipment, proper facility and equipment maintenance, and worker training. OSHA’s Walking/Working Surfaces - Safety and Health Topic page provides links to all the applicable standards. Some basic preventive practices include:

  • Good housekeeping

    • Keep floors clean, dry, and sanitary

    • Clean up spills promptly

    • Keep aisles and walkways free of obstructions and clutter



  • Footwear

    • Fit properly

    • Require slip-resistant foot in areas prone to wet or slippery conditions



  • Fall prevention and protection

    • Provide appropriate fall arrest systems



  • Facilities and equipment

    • Walking and working surfaces

      • Floor surfaces should not be slippery or uneven

      • Install non-slip flooring in areas prone to wet or slippery conditions

      • Maintain floors in good condition

      • Equip elevated working surfaces and stairways with guardrails

      • Protect floor holes such as drains with grates or covers

      • Promptly remove ice and snow from walkways, parking lots, etc.

      • Adequate lighting

      • Ladders

        • Provide properly rated ladders

        • Maintain ladders in good condition







  • Training

    • Provide worker training for

      • Slip, trip, and fall hazards

      • Ladder use

      • Personal fall arrest systems






Don’t Slip Up on Safety!


Bruising, twisting or breaking a bone makes your work life and personal life extra challenging – it’s worth it to take a few minutes to prevent the accident from ever happening. On TV and in the movies, slips and other footing mishaps are carefully orchestrated with hidden padding, stunt doubles, some great camera tricks, and, of course, an endless supply of retakes. When you’re working on the job, there’s only one chance! 

Using the tips listed above, take a look around your workplace to see if it meets the criteria to prevent slips, trips and falls.  Don’t forget to look at your own feet to see that you are properly dressed for the environment and job duties. If you see a situation that is unsafe or could potentially be a slip, trip and fall hot spot, make sure you point it out to your coworkers and safety officer so that a permanent solution can be found.

Has it happened to you?


Have you experienced a slip, trip or fall on the job?  Could it have been prevented? What was the outcome for you and your company?
Read More

Topics: health and safety, General Industry H&S, OSHA Compliance, General EHS, Construction H&S, Emergency Response, H&S Training, Compliance, worker safety, Occupational Safety, Lab Safety & Electrical, construction, General Industry, Fire Safety, fall protection, trips, slips

Subscribe to EHSWire.com!

Search EHSWire.com!

Latest Posts

Posts by category