ehs wire

 

 

blog horizontal banner

Environmental Health and Safety Blog | EHSWire

343 + 2 = Changes in NYC Asbestos Regulations

Posted by Shivi Kakar

Aug 29, 2011 7:22:05 AM

Dale Wilson, CIH, LEED AP, Sr. Project Manager

"343" is a symbol of great sadness to members of the FDNY and their families as 343 is the number of FDNY firefighters who died on September 11, 2001. That staggering figure is remembered quite readily when recalling the events of that day and during the remembrances that have followed.  However, almost six years later, the lives of two additional NY firefighters were claimed during the demolition of the 9/11-damaged Deutsche Bank Building.

The 41-story Deutsche Bank Building stood adjacent to the World Trade Center and was severely damaged by falling debris and smoke when the Twin Towers collapsed. The damage to the skyscraper was so extensive that it had to be demolished. However, as the federal EPA requires, before it could be demolished, all asbestos-containing materials needed to be removed.

By August 18, 2007, demolition was well underway and the building now stood at only 26 stories tall.  Around 3:40 pm, a massive seven-alarm fire broke out as a result of a discarded cigarette in the asbestos decontamination unit on the 17 th floor.  The building had not been inspected by the Fire Department since March, when it should have been inspected every 15 days.  As a result, a crucial but inoperable fire standpipe forced firefighters to raise hoses up from the street to combat the flames.   Inside the building, three firefighters struggled to pull a hose through the deconstructed building. Only one of these men survived. The configuration of the asbestos abatement added to the difficulty of fighting a fire in an already structurally-compromised building.

The National Institute for Occupational Safety and Health (NIOSH), an institute within the Centers for Disease Control and Prevention (CDC), completed a description and evaluation of the incident as part of their fire fighter fatality investigation. Several items stand out from the asbestos abatement as contributors to the fire:

  • White plastic sheeting was used to partition the floor area into separate zones.  All these partitions created maze-like conditions for the firefighters.

  • Numerous zones were under negative pressure, as required for asbestos abatement, possibly drawing smoke and fire into localized areas.

  • Stairwell doors were blocked by wooded hatch covers as part of the construction of the asbestos containments.

  • Plastic sheeting, construction debris, and exposed lumber in partitions provided additional fuel.


These contributing conditions created by the asbestos abatement project have been recognized by several authorities, and in an effort to maximize safety, New York City enacted a number of new laws to ensure that asbestos abatement projects are conducted safely.  These laws impact the ways that asbestos projects are filed, approved and inspected, and involve new levels of cooperation among the agencies that oversee asbestos and construction safety:  the NYC Department of Environmental Protection (NYC DEP), the Department of Buildings (DOB) and the Fire Department (FDNY).  Most notably, the NYC DEP created the Asbestos -Technical Review Unit (A-TRU) to ensure that asbestos abatement is conducted safely and a new process for filing for asbestos permits called Asbestos Reporting and Tracking System (ARTS).

ARTS enables applicants to submit applications and/or receive approvals (or objections) electronically.  During the application process, applicants are asked questions to identify if

  • the building’s fire protection systems (e.g., fire alarm or sprinkler system) will be turned off as a result of the abatement work,

  • abatement work will result in blocked or compromised egress or whether any components of the fire protection system are going to be removed as part of the abatement

  • abatement work entails removal of passive fire protection (e.g., fire resistance rated walls, sprayed on fireproofing, or smoke dampers)


If there is an impact to any of these fire protection items then a comprehensive Work Place Safety Plan must be developed for the project indicating abatement containment areas and systems, obstructed and temporary exits, tenant protection and a description of any measures that will be taken to mitigate compromised fire protection systems or means of egress. As a final item intended to promote life safety during abatement projects, the asbestos supervisor must inspect exits daily to ensure that there are no exterior blockages or impediments to exiting. If any blockages or impediments are identified, work must stop until the blockage has been removed.  Essentially, deconstruction and asbestos-abatement work cannot compromise the safety of workers and firefighters.

As Carrie Bettinger noted in a past EHSWire blog, “ In our society and legal system it seems that, yes, someone (or many) has to tragically die before change and regulation are considered.” In this case, the tragedy was 343+2. Hopefully the A-TRU process and increased oversight from NYC DEP, DOB, and FDNY will prevent another similar tragedy from occurring.

Postscript:  The last of the Deutsche Bank tower criminal trials were completed in July, 2011. More information can be found at http://www.nytimes.com/2011/07/07/nyregion/final-defendant-is-acquitted-in-deutsche-bank-fire-trial.html.
Read More

Topics: indoor air quality, health and safety, Construction H&S, EPA, Emergency Response, Homeland Security, H&S Training, worker safety, regulation, construction, emergency response training, demolition, 9/11, Work Place Safety Plan, asbestos, September 11, Deutsche Bank NYC, A-TRU, 9-11, Fire Safety

What Has Changed in Environmental Monitoring Since Sept 11, 2001?

Posted by Shivi Kakar

Aug 15, 2011 11:00:53 PM

Dave Tomsey

On the second day of 2011, the James Zadroga Act was authorized to broaden and renew funding and extend benefits to Ground Zero workers whose death was a result of exposure.  These exposures were directly and indirectly caused by toxins present in the billowing clouds of dusts and smoke following the worst tragedy to happen on American soil in my lifetime.  The tragic sickness of countless rescue workers continues to add heartbreak where there is little room for more.

What Do We Know?


In the 9/11 crisis, workers were really battling two threats:   terrorism and vaporized building materials. The high levels of toxins at the World Trade Center site were identified and measured.  This process was carried out using sampling pumps, associated media and lab results in order to classify possible carcinogens and determine their percentage in a given volume of air.  The process is the same today. Although concentrations may differ from one area to another, the goal is to establish the worst-possible contaminant scenario to protect site workers and the public.  Once the type and levels of hazards are known, engineering controls, PPE and other methods of worker health protection are put in place.

Protecting Emergency Response Workers: What Has Changed?


In the time that has passed since the WTC tragedy, technology has progressed to offer improved worker protection. Just as smart phones have become prevalent in our lives, the same technology has been integrated into measurement devices producing smaller instrumentation with better, faster communication capabilities.  Put together, these smart systems, unthinkable ten years ago, enable real time environmental hazard monitoring.  In a nutshell, as hazards are detected at the site, real time systems send up an immediate flare.  What used to take a day (at best) to reveal is now known instantly at your fingertips.

How Would Real-time Monitoring be Used for Emergency Response Today?


As lab samples are being collected and rescue workers or cleanup crews are in service with respirators, monitoring field stations can be set up and started.  Once samples identify the risk, , the field stations can continuously measure dust and volatile organic compounds (VOCs) in real time as a surrogate for contaminants found in laboratory samples.  Field stations located around and within the work area form multiple monitoring zones to (1) protect workers in close proximity to contaminants, (2) determine an exclusion zone for support personnel, and (3) protect residents and other businesses at an even greater distance from the site. End result? The constant stream of field data, with corresponding weather information such as wind, precipitation and temperature, would either confirm or indicate modified worker protection needs as the project continues.

How Do You Know When Workers Need Some Type of Additional Safety Precautions Beyond Respirators?


A real time environmental monitoring system is designed for continuous monitoring of all aspects of emergency response recovery and cleanup efforts so that risk can be evaluated as the scenarios change. Today’s technology has impacted and improved virtually every aspect of environmental monitoring:

  • Authorized personnel can receive constant updates and alarms via multiple means:  text, email or 2-way radios.

  • Incoming and historical data can be viewed by multiple stakeholders at varying locations and allow managers in the field to instantly assess trends with laptops, tablets and smart phones.

  • Measurements collected in real time are averaged and processed to show trends in and around the work zone.  These trends are displayed as either a table, graphic plots or shown with contours to establish if a work practice or area is safe for personnel

  • Plotting data points with corresponding wind speed and direction allows for managers to determine if offsite sources are impacting the job site or if the vapors and dusts shown on-screen are generated onsite.  Meteorological data showing site conditions (such as high winds) indicates when additional safety precautions should be considered.

  • New monitoring equipment now measures multiple levels of dust and vapors into the parts per billion range.  Vapors measured in the parts per billion ranges allow for managers to see if potential toxic vapors are steadily climbing from the lowest detectable levels.  Multiple particle sizing differentiates inhalable dusts from heavier ones that can contain heavy metals.  This allows managers to classify dust readings, watching diesel emissions across site for workers and heavier particulates for neighboring residents and the public.


With such new and remarkable technologies there is no reason to not employ them.

The connected lifestyle and technology of today’s standards help us accomplish many tasks and stay informed.  We are all used to checking our phone or bringing up a website to learn more.  This same connection through real time monitoring to hazardous work sites would be second nature to most and allow for the protection of many.  My hope is that there will never be a need for real time monitoring in response to an incident like 9/11 but, as an American and a CIH working at hazardous sites; it is reassuring to know that there are developed technologies in place to better protect workers if the worst does indeed occur.
Read More

Topics: indoor air quality, Construction H&S, Emergency Response, Air Monitoring, 9/11, September 11, 9-11, Exposure, WTC, volatile organic compound, technology, VOC, environmental monitoring, real time monitoring, contaminants

Subscribe to EHSWire.com!

Search EHSWire.com!

Posts by category